兰州大学110周年校庆年系列活动——“九章讲坛”二十讲:陈晓敏博士

日期: 2018-11-05 阅读: 来源: 关键词:

应数学与统计学院李万同院长的邀请,中国科学院数学与系统科学研究院陈晓敏博士于近期访问兰州大学并作学术报告。

报告题目:Non-isospectral extension of the Volterra lattice hierarchy, and Hankel determinants
  时间:2018年11月8日下午4: 00
  地点:兰州大学城关校区西区齐云楼911室

报告摘要:

The Volterra lattice equation is one of the most important integrable partial differential-difference equations. In particular, it is a semi-discretization of the famous Korteweg–deVries (KdV) equation, for which it is sometimes referred to as‘discrete KdV equation’. It is well-known for its use to model population dynamics in biological systems. An integrable partial differential-difference equation typically belongs to a hierarchy, which is an infinite sequence of integrable equations, with increasing complexity and such that the flows mutually commute. In this talk, I will present our recent work. For the first two equations of the Volterra lattice hierarchy and the first two equations of its non-autonomous (non-isospectral) extension, we present Riccati systems for functions c_j(t), j = 0, 1, . . ., such that an expression in terms of Hankel determinants built from them solves these equations on the right half of the lattice. This actually achieves a complete linearization of these equations of the extended Volterra lattice hierarchy.

个人简介:

陈晓敏,2016年博士毕业于中科院数学与系统科学研究院,师从胡星标研究员。2016年9月至2018年9月在德国哥廷根的Max Planck Institute for Dynamics and Self-Organization 做博士后研究,导师 Folkert Müller-Hoissen教授。主要从事与正交多项式相关的可积系统方面的研究。从行列式解出发, 采用Hirota 双线性方法及行列式技巧推广了几个与正交多项式相关的半离散的、全离散的以及连续的可积系统。部分工作发表在 Advances in Mathematics及 Nonlineariy杂志上。

应用数学与复杂系统省级重点实验室
数学与统计学院
2018年11月5日

发现错误?报错
文:
图:
编辑:潘志杰
 

推荐关注

阅读下一篇