LZU Media Center: 新闻网 > 学术讲座 > 2017 > 正文


日期: 2017-12-18 点击: ...


  报 告 人:潘善林 教授
  报告题目:Photoelectrochemical Investigations of Semiconductor Surfaces and Catalyst Interfaces for Solar Water Splitting

  美国阿拉巴马大学终身教授,1998在兰州大学取得学士学位,2001年在兰州大学取得硕士学位,2006年在美国Rochester大学取得博士学位,2006-2008年在美国德克萨斯大学著名电化学家Allen J. Bard研究小组从事博士后工作。自从2008年加入阿拉巴马大学以来,在J. Am. Chem. Soc., J. Phys. Chem., Langmuir, PCCP等学术期刊上发表多篇论文。主要研究领域包括光电化学, 单分子光谱电化学,清洁能源。曾获美国化学会Irving S. Sigal 奖学金, 和阿拉巴马大学理工学院Leadership Board Fellow奖。

Fig. 1: NanoCOT for solar water splitting [1].


The world energy consumption is projected to be 28 TW in 2050. Fossil fuel, biomass, solar, wind, geothermal, and nuclear energy sources are available solutions for this global energy challenge. Among these, solar energy is the most eco-friendly, sustainable, and economical energy source. There is an average of 1.2×105 TW of solar energy potentially available on the earth, holding the promise for addressing the future global energy challenge. The primary obstacle of using solar energy solution to meet this great challenge is how to develop an efficient and low-cost solar energy harvesting and conversion system. Our research efforts at The University of Alabama primarily focus on developing efficient electrode materials to help address global energy challenge [1-4]. These electrode materials may contain multicomponent, engineered structures of low-cost materials for efficiency light energy absorption, charge separation, charge transport, and fuel conversion, which are key steps involved in solar cell and solar water splitting technologies. This presentation will primarily focus on low-cost water oxidation catalyst NanoCOT electrode [1] which contains earth-abundant elements and operating efficiently in alkaline solution for oxygen evolution reaction (OER), surface plasmon enhanced thin film photocatalysts [2-4], and MoS2 coated p-type semiconductor for solar water splitting with enhanced stability and catalytic activity. The NanoCOT is prepared by facile carbon thermal transformation of a nanostructured Ti substrate or TiO2 NPs in an atmosphere of methane, hydrogen, and nitrogen. This catalytic performance for OER of NanoCOT can be further improved by coating its surface with 2 nm IrO2 NPs. With its lower cost and superior performance for OER over IrO2 and Pt samples, NanoCOT holds the promise for being used as an active electrode material in an electrolyzer. Surface catalyst coating technique to enhance the stability and efficiency of proto reduction at the surface of a p-type photocatalyst Cu2O, which suffers from a major issue of chemical stability and sluggish proton reduction for splitting water using sunlight. MoS2 coating on top of Cu2O is achieved to improve its proton reduction performance. Photoelectrochemical measurements demonstrate higher activity for < 50 nm thick MoS2/Cu2O photocathode fabricated at 450°C with a photocurrent of ~ 5 mA cm−2 at −0.2 V vs. RHE. Additionally, the MoS2 coating helps minimize the dark current of the Cu2O photocathode.

[1] Z. Shan, P. Archana, G. Shen, A. Gupta, M. Bakker, S.L. Pan, J. Am. Chem. Soc., 137 (2015),11996.
[2] A. Yengantiwar, S. Palanivel, A. Panikar, Y.X. Ma, S.L. Pan, A. Gupta, J. Phys. Chem. C, 121 (2017) 5914.
[3] J. Wang, J. Waters, P. Kung, S. Kim, J. Kelly, L. McNamara, N. Hammer, A. Gupta, S.L. Pan, ACS Appl. Mater. Inter. 9 (2017) 381.
[4] A. S. Panikar, Z.C. Shan, S.L. Pan, A. Gupta, Int. J. Hydrogen Energ., 42 (2017) 8475.
[5] P. Archana, N. Pachauri, Z. Shan, S. L. Pan, J. Phys. Chem. C, 119 (2015), 15506.
[6] J. Wang, S.L. Pan, M.Y. Chen, D. A. Dixon, J.  Phys. Chem. C, 117 (2013), 22060.
[5] H. C. Lee, S. L. Pan, A. J. Bard, Anal. Chem. 80 (2008) 7445.


          Email: news@lzu.edu.cn